Use of trihalomethanes as a surrogate for haloacetonitrile exposure introduces misclassification bias

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Historical pesticide exposure in California using pesticide use reports and land-use surveys: an assessment of misclassification error and bias.

We used California's Pesticide Use Report (PUR) and land-use survey data to conduct a simulation study evaluating the potential consequences of misclassifying residential exposure from proximity to agricultural pesticide application in health effect studies. We developed a geographic model linking the PUR with crop location data from land-use surveys to assess the impact of exposure misclassifi...

متن کامل

Does nondifferential misclassification of exposure always bias a true effect toward the null value?

The authors present some examples to demonstrate that in certain nondifferential misclassification conditions with polychotomous exposure variables, estimates of odds ratios for categories at intermediate level of risk can be biased away from the null or can change direction. In addition, the authors present two examples to demonstrate that the slope of the dose-response trend for the true dist...

متن کامل

the use of appropriate madm model for ranking the vendors of mci equipments using fuzzy approach

abstract nowadays, the science of decision making has been paid to more attention due to the complexity of the problems of suppliers selection. as known, one of the efficient tools in economic and human resources development is the extension of communication networks in developing countries. so, the proper selection of suppliers of tc equipments is of concern very much. in this study, a ...

15 صفحه اول

Minimizing The Misclassification Error Rate Using a Surrogate Convex Loss

We carefully study how well minimizing convex surrogate loss functions corresponds to minimizing the misclassification error rate for the problem of binary classification with linear predictors. We consider the agnostic setting, and investigate guarantees on the misclassification error of the loss-minimizer in terms of the margin error rate of the best predictor. We show that, aiming for such a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Water Research X

سال: 2021

ISSN: 2589-9147

DOI: 10.1016/j.wroa.2021.100089